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Abstract
We present a general description of thermophoretic phenomena in dilute
suspensions of spherical colloids which lie at the basis of the Ludwig/Soret
effect. We first consider how a thermal gradient affects a homogeneous fluid
showing that, to linear order, no momentum flux is generated in the bulk. The
presence of a colloidal particle, however, modifies the pressure tensor of the
fluid, thereby creating a velocity field in the neighbourhood of the surface of
the colloid, which can be calculated by use of the Navier–Stokes equation. As a
consequence, momentum transfer to the colloid takes place. When this effective
force is substituted into a Smoluchowski equation for the particle motion, we
arrive at a simple and general expression of the Soret coefficient in terms of the
colloid–liquid surface tension.

1. Introduction

Thermophoretic phenomena are known to be ubiquitous in soft matter physics [1] and recent
experiments also suggest that they are likely to underlie physical mechanisms of considerable
biological relevance [2]. One of the simplest instances where thermophoresis occurs is a
dilute colloidal suspension in a thermal gradient: after an equilibration time (which depends
on the specific system) the colloidal particles acquire a non-uniform profile described by the
phenomenological equation:

dc

dz
= −cST

dT

dz
(1)

where c is the colloid concentration, ST is the Soret coefficient and the thermal gradient is placed
in the ẑ direction. Positive (negative) values of ST mean that colloids accumulate toward the
cold (hot) region of the sample. Despite the apparent simplicity of the phenomenon, systematic
experimental investigations of thermophoresis in colloidal suspensions have been attempted
only recently [3, 4], while studies of the same effect in rarefied gases have been performed

0953-8984/05/453639+05$30.00 © 2005 IOP Publishing Ltd Printed in the UK S3639

http://dx.doi.org/10.1088/0953-8984/17/45/059
http://stacks.iop.org/JPhysCM/17/S3639


S3640 A Parola and R Piazza

since the 19th century [5]. Therefore, it is not surprising that while a convincing theoretical
explanation of the thermophoretic phenomena in gases was achieved a long time ago, the
microscopic understanding of the Soret effect in colloidal suspensions is still controversial,
and many puzzling features (like the absolute magnitude and the temperature dependence
of the Soret coefficient) are still unexplained, despite the long lasting theoretical effort on
the subject.

This contribution aims at clarifying some basic theoretical problems in the description of
thermophoretic phenomena in colloidal suspensions. In particular, we attempt to develop a
general formalism which, in the case of gases, is able to reproduce the known results obtained
via the kinetic theory but can, at the same time, be applied to denser systems. Here, we
deal with the simplest model exhibiting the thermophoretic phenomenon: an extremely dilute
suspension of hard spheres floating in a liquid, subject to a given temperature gradient.

2. Distribution function in a thermal gradient

As a first step we ask how the phase space distribution function of the molecules of a simple
fluid (i.e. of the solvent) is modified by the presence of a thermal gradient. This problem
has been extensively investigated in the special case of rarefied gases, starting from the
seminal works by Reynolds and Maxwell [5]. An approach based on the kinetic theory
of gases shows that, to linear order in the thermal gradient, the single-particle momentum
distribution function acquires a further contribution besides the known equilibrium result
f0(p) = Z−1 exp(−βp2/(2m)):

f (p) = f0(p)

[
1 + C

(
5

2
− β

p2

2m

)
p · ∇T

]
(2)

where the constant C depends on the particle collision rate [5]. Starting from this result, it
is easy to show that no off-diagonal momentum flux is present and the full pressure tensor
is unaffected by the presence of the thermal gradient. Remarkably, the same conclusion
also holds for a dense liquid, where the analysis based on the Boltzmann equation does
not hold. The correct way to tackle this difficult problem is the linear response theory
in the Green–Kubo formalism, subsequently generalized by Mori to deal with the thermal
transport coefficients [6]. According to this theory, the full, phase space distribution function
of a fluid in a thermal gradient F(q, p) differs from its equilibrium result at the average
temperature F0(q, p) in two distinct ways. The first is based on a natural generalization of the
concept of thermodynamical equilibrium: the local thermal equilibrium (LTE) described by
a distribution function FLTE(q, p) formally identical to the equilibrium one, evaluated at the
local temperature. However, a further correction to LTE is also present in the form of a time
dependent contribution originating from the natural tendency of the system to achieve thermal
equilibrium. The final expression for F(q, p) can be written as

F = FLTE + βF0

∫
dx

[
j(q, p, x) · v(x)− β

∫ t

0
dτU(τ )JH (q, p, x) · ∇T

]
(3)

where the dependence of the distribution functions on the phase space variables (q, p) is
understood. U(t) = exp(tL) is the exact many-body evolution operator, while j(q, p, x) and
JH (q, p, x) are the local mass and energy flux respectively, whose microscopic definition can
be found in [6]. By use of the non-equilibrium distribution function (3) it is (formally) possible
to calculate averages of any local microscopic observable: the physical result corresponds to
the limit t → ∞. Finally, the auxiliary function v(r) appearing in (3) is implicitly defined by
the condition that the average mass flux coincides with the product of the average mass density
ρ(r) times the average velocity u(r), i.e. by 〈j(q, p, r)〉 = ρ(r)u(r).
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Interestingly, the symmetry properties of the distribution functions F0 and FLTE have
important consequences for the momentum transport in the fluid and lead to simple and general
results. In a homogeneous and isotropic system described by the distribution function F0 no
privileged vector can be defined. As a consequence, the equilibrium averages of the rank
three tensors appearing in the calculation of the pressure tensor 〈J αβ(r)〉 via equation (3) must
vanish identically:∫

dx 〈J αβ(r) j γ (x)〉0 = 0;
∫

dx 〈J αβ(r)U(τ )J γH (x)〉0 = 0. (4)

Only the local thermal equilibrium part contributes to the pressure tensor, which, due to the
isotropy of the momentum distribution FLTE, reduces to diagonal form:

〈J αβ(r)〉 = 〈J αβ(r)〉LTE = pδαβ. (5)

The last equality in (5) then follows from the hypothesis that the pressure is uniform throughout
the sample, due to the requirement of mechanical stability of the system.

If the fluid remains static even in the presence of the thermal gradient, the condition of
vanishing mass flux reads

〈j(r)〉 = ρ0v − β2

3
∇T

∫ ∞

0
dτ

∫
dx〈j(0, τ ) · JH (x)〉0 = 0 (6)

which defines the parameter v.
In the limiting case of extremely rarefied gases (ideal limit) equation (3) together with (6)

reproduces the results of kinetic theory (2). However, even in the presence of strong interactions
between the molecules, Mori’s linear response theory shows that a temperature gradient in a
homogeneous fluid does not affect the pressure tensor.

3. Thermophoretic force

The case, however, is different when the presence of a surface breaks space homogeneity. This
circumstance does indeed occur when a large body (e.g. a colloid) is present in the solvent.
In such a case the structure of the pressure tensor predicted by linear response theory is richer
and a net momentum transfer between the fluid and the colloid sets in. Instead of using
the fully microscopic distribution function (3), valid both for gases and liquids, we adopt a
hydrodynamic approximation keeping only the FLTE contribution and determining the average
velocity profile u(r) via the Navier–Stokes equation for an incompressible fluid in the absence
of external forces:

η∇2uα(r)− ∂β〈J αβ(r)〉LTE = 0 (7)

where η is the shear viscosity of the solvent. For a spherical colloid of radius a, the most
general pressure tensor depends upon two scalar functions of the radial variable, the normal
and the tangential components [7]:

〈J αβ(r)〉0 = nαnβ pN (r) + (δαβ − nαnβ)pT (r) (8)

where n is the radial unit vector, and the two components of the pressure satisfy the equilibrium
condition ∂β〈J αβ(r)〉0 = 0. Evaluating the pressure tensor in LTE amounts to considering
pN (r) and pT (r) as functions of the local temperature T (z) (here we assume that the gradient
is along the ẑ direction) at fixed bulk pressure p. By substituting equation (8) into the Navier–
Stokes equation (7) we can formally solve (7) for the velocity profile with no slip boundary
conditions on the surface of the colloid u(r)|	 = 0. Following the same procedure as developed
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in [8], we finally obtain the velocity field u(r, z). The momentum flux transferred to the colloid
then yields the net force acting on the particle due to the thermal gradient [8]:

f = −2πa∇T
∂

∂T

∣∣∣∣∣
p

∫ ∞

a
dr

r2 − a2

r
(pN (r)− pT (r)). (9)

In the limit of a large colloid, which is often fairly realistic, the planar limit can be used and
equation (9) acquires a simple and suggestive form:

f = −4πa∇T
∂

∂T

∣∣∣∣∣
p

∫ ∞

0
dx x(p − pT (x)) (10)

where use has been made of the mechanical equilibrium condition at planar interfaces
pN (x) = p [7].

According to the standard jargon of interface physics, the quantity appearing on the right
hand side of equation (10) is just the temperature derivative of the product of the surface tension
γ times a characteristic length �which measures the size of the liquid layer where the pressure
tensor is anisotropic:

γ =
∫ ∞

0
dx (p − pT (x))

� = γ−1
∫ ∞

0
dx x(p − pT (x)).

(11)

4. Smoluchowski equation and the Soret coefficient

Now we can follow the discussion of [8] in order to relate the net ‘thermophoretic force’ (10)
on a single colloid to the Soret coefficient in a dilute colloidal suspension under a uniform
thermal gradient in the ẑ direction. The starting point is the Smoluchowski equation describing
the time evolution of the probability P(z, t) to find a colloidal particle at height z:

∂P

∂ t
= ∂

∂z

[
− P

γ
fz + D

∂P

∂z

]
(12)

where the friction coefficient γ is linked to D by the Einstein relation: γ D = kT . At
stationarity, the time derivative vanishes, leading to

kT
dP

dz
= P fz . (13)

The concentration profile of a suspension of N non-interacting particles is then given by
equation (13) for the variable c = N P:

kT
dc

dz
= c fz, (14)

which, together with equation (10) and compared with equation (1), provides the required
explicit expression for the Soret coefficient (in the planar approximation):

ST = 4πβa
∂

∂T

∣∣∣∣∣
p

∫ ∞

0
dx x(p − pT (x)). (15)

This expression, derived here in a rather general framework, closely resembles the
phenomenological ansatz put forward by Ruckenstein [9], which helped the interpretation
of experiment in SDS micelles [3]. For hard particles and thin solvent inhomogeneous
layers, equation (15) predicts the Soret coefficient to scale linearly with a, and therefore
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the thermophoretic velocity uT = −nST D∇T , where n is the particle number density, to
be independent of the particle size. Such a behaviour was actually observed back in 1973
in a seminal paper on thermophoresis of large colloidal particles [10]. In the presence of
specific particle–solvent interactions, the situation may be different. For instance, the explicit
expression for charged colloids in the linear DH limit derived in [8],

ST = εa

kBT 2
ψ2

s (16)

yields a different scaling on a depending on whether the particle surface potential ψ or the
surface charge is kept fixed when a is varied. In the latter case, it is interesting to note that ψ
depends on a even in the quasi-planar limit, so that ST scales as a−3.

Further insight on the state dependence of the Soret coefficient can be obtained by recalling
the microscopic expression of the pressure tensor of a fluid interacting via a two-body potential
v(r) [6]:

〈J αβ(x)〉0 =
〈∑

n

δ(rn − x)

[
pαn pβn

m
− 1

2

∑
m �=n

rαnmrβnm

rnm

∂v(rnm)

∂rnm

]〉

0

(17)

where rnm = |rn − rm |. By modelling the structure of the fluid as that of a hard sphere liquid,
it is easy to show that the difference between the normal and the transverse contribution to
the pressure tensor comes entirely from the second term in equation (17) and then it just
depends on density (while the first term provides the huge ideal gas contribution to the
bulk pressure which is linear in temperature). In this case, the surface tension γ and the
length � (11) depend on temperature only through the number density of the liquid n(p, T )
leading to a Soret coefficient (15) proportional to the thermal expansion coefficient of the fluid
α = −n−1(∂n/∂T )p.

5. Conclusions

In this note, we briefly discussed the basic concepts of a microscopic approach for the
interpretation of thermophoresis in colloidal suspensions. Starting from the general formalism
of linear response, we showed that thermophoretic phenomena are basically surface effects,
originating from the breaking of the translational and rotational invariance of the host fluid
(solvent) induced by the presence of the colloidal particle. This formalism, when specialized
to rarefied gases in an external thermal gradient, reproduces the known results obtained by use
of the Boltzmann equation. If local thermal equilibrium is attained in the solvent, the Soret
coefficient can be expressed in terms of the pressure tensor of the fluid and is closely related
to the temperature derivative of the tension of the colloid–solvent interface.
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